Uses of Interface
org.simBio.core.Node

Packages that use Node
org.simBio.bio for the biologists. 
org.simBio.bio.cor   
org.simBio.bio.faber_rudy_2000.current   
org.simBio.bio.faber_rudy_2000.function   
org.simBio.bio.faber_rudy_2000.molecule   
org.simBio.bio.faber_rudy_2000.structure   
org.simBio.bio.function   
org.simBio.bio.henriquez_et_al_2001   
org.simBio.bio.himeno_et_al_2008   
org.simBio.bio.hodgkin_huxley_1952 Modifyed Hodgkin Huxley Squid Axon Model 1952 
org.simBio.bio.kurata_et_al_2005.complex   
org.simBio.bio.kurata_et_al_2005.current   
org.simBio.bio.kurata_et_al_2005.flux   
org.simBio.bio.kurata_et_al_2005.molecule   
org.simBio.bio.kuratomi_et_al_2003.current.carrier   
org.simBio.bio.kuzumoto_et_al_2007.contraction   
org.simBio.bio.kuzumoto_et_al_2007.current   
org.simBio.bio.kuzumoto_et_al_2007.current.carrier   
org.simBio.bio.kuzumoto_et_al_2007.current.cf   
org.simBio.bio.kuzumoto_et_al_2007.function   
org.simBio.bio.kuzumoto_et_al_2007.molecule   
org.simBio.bio.matsuoka_et_al_2003.complex   
org.simBio.bio.matsuoka_et_al_2003.current   
org.simBio.bio.matsuoka_et_al_2003.current.carrier   
org.simBio.bio.matsuoka_et_al_2003.current.cf   
org.simBio.bio.matsuoka_et_al_2003.current.channel   
org.simBio.bio.matsuoka_et_al_2003.current.pipette   
org.simBio.bio.matsuoka_et_al_2003.current.potassium   
org.simBio.bio.matsuoka_et_al_2003.function The common functions among models 
org.simBio.bio.matsuoka_et_al_2003.molecule.buffer   
org.simBio.bio.matsuoka_et_al_2003.molecule.buffer.Ca   
org.simBio.bio.matsuoka_et_al_2003.molecule.enzyme   
org.simBio.bio.matsuoka_et_al_2004.current.carrier   
org.simBio.bio.matsuoka_et_al_2004.exp   
org.simBio.bio.matsuoka_et_al_2004.function   
org.simBio.bio.matsuoka_et_al_2004.function.chemical   
org.simBio.bio.matsuoka_et_al_2004.molecule   
org.simBio.bio.matsuoka_et_al_2004.molecule.buffer   
org.simBio.bio.matsuoka_et_al_2004.molecule.buffer.Ca   
org.simBio.bio.matsuoka_et_al_2004.molecule.enzyme   
org.simBio.bio.matsuoka_et_al_2004.molecule.RespiratoryChain   
org.simBio.bio.matsuoka_et_al_2004.molecule.Transporter   
org.simBio.bio.negroni_lascano_1996 The contraction model proposed by Negroni and Lascano, 1996. 
org.simBio.bio.negroni_lascano_1996.exp   
org.simBio.bio.noble_et_al_1998   
org.simBio.bio.oka_et_al_2006.function   
org.simBio.bio.oka_et_al_2006.function.kinetics   
org.simBio.bio.oka_et_al_2006.structure   
org.simBio.bio.sarai_et_al_2003   
org.simBio.bio.sarai_et_al_2006.current.carrier   
org.simBio.bio.sarai_et_al_2006.current.cf   
org.simBio.bio.sarai_et_al_2006.function   
org.simBio.bio.sarai_noma_2004 Single Na channel model, Sarai and Noma, 2004. 
org.simBio.bio.sarai_noma_2004.fourState   
org.simBio.bio.sarai_noma_2004.structure   
org.simBio.bio.takeuchi_et_al_2006.current   
org.simBio.bio.takeuchi_et_al_2006.function   
org.simBio.bio.tenTusscher_et_al_2004.complex   
org.simBio.bio.tenTusscher_et_al_2004.current   
org.simBio.bio.tenTusscher_et_al_2004.current.carrier   
org.simBio.bio.tenTusscher_et_al_2004.flux   
org.simBio.bio.tenTusscher_et_al_2004.function   
org.simBio.bio.terashima_et_al_2006.complex   
org.simBio.bio.terashima_et_al_2006.current Classes for membrane currents. 
org.simBio.bio.terashima_et_al_2006.current.carrier   
org.simBio.bio.terashima_et_al_2006.current.cf   
org.simBio.bio.terashima_et_al_2006.current.potassium   
org.simBio.bio.terashima_et_al_2006.experiment Classes for experimental manipulation. 
org.simBio.bio.terashima_et_al_2006.function The common functions among models 
org.simBio.core The basal Classes of the simBio
simBioの基盤クラス群。
他のクラスは全て、ここにあるクラスを参照もしくは継承もしくは利用しています。 
org.simBio.core.integrator   
org.simBio.sim.analyzer analyzers which inherit core.Analyzer,
core.Analyserを継承するクラス群 
org.simBio.sim.analyzer.csv CSV maker
計算結果をCSV形式で書き出します。 
org.simBio.sim.analyzer.csv.keep   
org.simBio.sim.analyzer.csv.result   
org.simBio.sim.analyzer.graph   
org.simBio.sim.analyzer.graph.simple 2D Graph maker
計算結果を2次元グラフで表示する。 
org.simBio.sim.analyzer.measure   
org.simBio.util.numerical   
org.simBio.util.numerical.methods   
 

Uses of Node in org.simBio.bio
 

Classes in org.simBio.bio that implement Node
 class Compartment
          Nodes folder, contain no equation.
 class parabola
          for test.
 

Fields in org.simBio.bio declared as Node
 Node parabola.y
           
 Node parabola.z
           
 

Uses of Node in org.simBio.bio.cor
 

Classes in org.simBio.bio.cor that implement Node
 class Hodgkin_huxley_squid_axon_1952_modified
          Conversion from CellML 1.0 to Java was done using COR (0.9.31.28)
Copyright (c) 2002-2005 Oxford Cardiac Electrophysiology Group
 class Vanderpol_model_1928
          Conversion from CellML 1.0 to Java was done using COR (0.9.31.28)
Copyright (c) 2002-2005 Oxford Cardiac Electrophysiology Group
 

Fields in org.simBio.bio.cor declared as Node
 Node Vanderpol_model_1928.Main_x
          Main_x (dimensionless).
 Node Vanderpol_model_1928.Main_y
          Main_y (dimensionless).
 Node Hodgkin_huxley_squid_axon_1952_modified.membrane_V
          membrane_V (millivolt).
 Node Hodgkin_huxley_squid_axon_1952_modified.potassium_channel_n_gate_n
          potassium_channel_n_gate_n (dimensionless).
 Node Hodgkin_huxley_squid_axon_1952_modified.sodium_channel_h_gate_h
          sodium_channel_h_gate_h (dimensionless).
 Node Hodgkin_huxley_squid_axon_1952_modified.sodium_channel_m_gate_m
          sodium_channel_m_gate_m (dimensionless).
 

Uses of Node in org.simBio.bio.faber_rudy_2000.current
 

Classes in org.simBio.bio.faber_rudy_2000.current that implement Node
 class Current
          sodium background current.
 class ICaL
          L-type Calcium channnel.
 class ICaT
          T-Type Calcium Channel.
 class IK1
          time indipendent potassium channel
 class IKpl
          plateau potassium channel
 class IKr
          Rapidly Activating Potassium channel
 class IKs
          slow time dependent potassium channel
 class INa
          fast sodium channel
 class INaCa
          Sodium Calcium exchanger
 class INaK
          sodium potassium pump current
 class IpCa
          Sarcolemmal Ca Pump Current
 class NSRLeak
          leak current from NSR
 class RyR
          Calcium release channel on SR
 class SRCA
          SR calcium pump.
 

Fields in org.simBio.bio.faber_rudy_2000.current declared as Node
 Node ICaL.Ca
           
 Node SRCA.Cai
           
 Node RyR.Cai
           
 Node IpCa.Cai
           
 Node INaCa.Cai
           
 Node IKs.Cai
           
 Node ICaL.Cai
           
 Node INaCa.Cao
           
 Node ICaL.Cao
           
 Node RyR.Casr
           
 Node NSRLeak.Casr
           
 Node ICaL.d
           
 Node Current.ep
           
 Node ICaL.f
           
 Node IKr.gate
           
 Node ICaT.gate_b
           
 Node ICaT.gate_g
           
 Node IKs.gate_xs1
           
 Node IKs.gate_xs2
           
 Node INa.h
           
 Node RyR.iCa
           
 Node RyR.iTotal
           
 Node INa.j
           
 Node ICaL.K
           
 Node IKs.Ki
           
 Node ICaL.Ki
           
 Node INaK.Ko
           
 Node IKs.Ko
           
 Node IKr.Ko
           
 Node IK1.Ko
           
 Node ICaL.Ko
           
 Node INa.m
           
 Node ICaL.Na
           
 Node INaK.Nai
           
 Node INaCa.Nai
           
 Node IKs.Nai
           
 Node ICaL.Nai
           
 Node INaK.Nao
           
 Node INaCa.Nao
           
 Node IKs.Nao
           
 Node ICaL.Nao
           
 Node INaK.T
           
 Node INaCa.T
           
 Node IKs.T
           
 Node ICaL.T
           
 Node RyR.timeStep
           
 Node RyR.Vm
           
 Node Current.Vm
           
 

Uses of Node in org.simBio.bio.faber_rudy_2000.function
 

Classes in org.simBio.bio.faber_rudy_2000.function that implement Node
 class Diffusion
          diffusion.
 class Stimulus
          Constructor for Stimulus.
 

Fields in org.simBio.bio.faber_rudy_2000.function declared as Node
 Node Diffusion.a
           
 Node Diffusion.b
           
 

Uses of Node in org.simBio.bio.faber_rudy_2000.molecule
 

Classes in org.simBio.bio.faber_rudy_2000.molecule that implement Node
 class CaBuffer
          analytic equation of Calcium buffering.
 class DualCaBuffer
           Faber GM, Rudy Y.
Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study.
Biophy J 2000;78:2392-2404
 

Fields in org.simBio.bio.faber_rudy_2000.molecule declared as Node
 Node CaBuffer.buffered
           
 Node DualCaBuffer.Cafree
           
 Node CaBuffer.Cafree
           
 Node DualCaBuffer.Catotal
           
 Node CaBuffer.Catotal
           
 

Uses of Node in org.simBio.bio.faber_rudy_2000.structure
 

Classes in org.simBio.bio.faber_rudy_2000.structure that implement Node
 class Cell
          Cell.
 class JSR
           Faber GM, Rudy Y.
Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study.
Biophy J 2000;78:2392-2404
 class NSR
           Faber GM, Rudy Y.
Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study.
Biophy J 2000;78:2392-2404
 

Fields in org.simBio.bio.faber_rudy_2000.structure declared as Node
 Node NSR.Ca
           
 Node NSR.Cai
           
 Node JSR.Cai
           
 Node JSR.CaTotal
           
 Node Cell.CaTotal
           
 Node Cell.ICab
           
 Node Cell.ICaLCa
           
 Node Cell.ICaLK
           
 Node Cell.ICaLNa
           
 Node Cell.ICaT
           
 Node Cell.Iext
           
 Node Cell.IK1
           
 Node Cell.IKpl
           
 Node Cell.IKr
           
 Node Cell.IKs
           
 Node Cell.INa
           
 Node Cell.INab
           
 Node Cell.INaCa
           
 Node Cell.INaK
           
 Node Cell.IpCa
           
 Node Cell.itotal
           
 Node Cell.itotalCa
           
 Node Cell.itotalK
           
 Node Cell.itotalNa
           
 Node Cell.K
           
 Node NSR.leak
           
 Node Cell.Na
           
 Node JSR.ryr
           
 Node NSR.srca
           
 Node NSR.trans
           
 Node JSR.trans
           
 Node Cell.Vm
           
 

Uses of Node in org.simBio.bio.function
 

Classes in org.simBio.bio.function that implement Node
 class Analytic2state
          2 state gateの解析解を求めて現在の解に設定する。 「心臓のフィジオーム」p.
 class Function
          Abstract super class of function format.
 class StepChanger
          Sequentially changes the value at the desired elapsed time.
 

Fields in org.simBio.bio.function declared as Node
 Node Analytic2state.alfa
           
 Node Analytic2state.beta
           
 Node Analytic2state.dt
           
 Node Analytic2state.previous
           
 Node StepChanger.target
          
 

Uses of Node in org.simBio.bio.henriquez_et_al_2001
 

Classes in org.simBio.bio.henriquez_et_al_2001 that implement Node
 class GapJunction
          Voltage-dependent gap junction model developed by Vogel and Weingart.
 

Fields in org.simBio.bio.henriquez_et_al_2001 declared as Node
 Node GapJunction.gHH
          conductance of HH state
 Node GapJunction.gHL
          conductance of HL state
 Node GapJunction.gLH
          conductance of LH state
 Node GapJunction.gLL
          conductance of LL state
 Node GapJunction.nHH
          fraction of HH state
 Node GapJunction.nHL
          fraction of HL state
 Node GapJunction.nLH
          fraction of LH state
 Node GapJunction.nLL
          fraction of LL state
 Node GapJunction.VHL
          voltage across hemichannel at HL state (mV)
 Node GapJunction.Vj
          junctional potential (mV)
 Node GapJunction.VLH
          voltage across hemichannel at LH state (mV)
 

Uses of Node in org.simBio.bio.himeno_et_al_2008
 

Classes in org.simBio.bio.himeno_et_al_2008 that implement Node
 class Iha
          Iha.
 class IKACh
          ACh channel.
 class Ist
          Sustained inward current for pacemaker model.
 

Fields in org.simBio.bio.himeno_et_al_2008 declared as Node
 Node Ist.activation
          gate variable
 Node ICaL.ATP
          intracellular ATP concentration (mM)
 Node IKs.Ca
          intracellular Ca2+ concentration
 Node ICaL.CaDiadic
          local Ca2+ concentration near the mouth of L-type Ca channel (mM)
 Node Ist.Cai
          intracellular calcium concentration (mM)
 Node ICaL.Cai
          intracellular Ca2+ concentration (mM)
 Node Iha.cAMP
          cAMP concentration
 Node Iha.cAMP_Vshift
           
 Node Iha.closedState1
           
 Node Iha.closedState2
           
 Node IKACh.gate
           
 Node ICaL.gate
          ultra-slow gate probability
 Node IKs.gate1
          the open probability of voltage-dependent gate
 Node IKs.gate2
          the open probability of [Ca2+]i-dependent gate
 Node IKs.gateC2
          the C2 state probability of [Ca2+]i-dependent gate
 Node Ist.inactivation
          gate variable
 Node IKs.KCNQ1
           
 Node IKs.KCNQ1free
           
 Node IKs.KCNQ1p
           
 Node IKs.KCNQ1p_ratio
           
 Node Iha.openState1
           
 Node Iha.openState2
           
 Node ICaL.pAI
          AI state probability for voltage-dependent gate
 Node ICaL.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pC
          C state probability for calcium-dependent gate
 Node ICaL.PCa
           
 Node ICaL.PCl
           
 Node ICaL.PK
           
 Node Ist.PKA
          PKA catalitic domain I concentration
 Node IKs.PKA
           
 Node ICaL.PKA
          PKA catalitic domain I concentration
 Node ICaL.PKA_fac
           
 Node ICaL.PNa
           
 Node IKs.POpen
           
 Node ICaL.pRP
          PR state probability for voltage-dependent gate
 Node ICaL.pU
          U state probability for calcium-dependent gate
 Node ICaL.pUCa
          UCa state probability for calcium-dependent gate
 Node ICaL.SingleCurrentAMP
          to see single current amplitude
 Node Ist.slowInactivation
          gate variable
 Node Ist.Vm
          membrane potential (mV)
 Node IKs.Vm
          Membrane Potential (mV)
 Node Iha.Vm
           
 Node ICaL.Vm
          membrane potential (mV)
 

Uses of Node in org.simBio.bio.hodgkin_huxley_1952
 

Classes in org.simBio.bio.hodgkin_huxley_1952 that implement Node
 class I_K
          Potassium Channel.
 class I_L
          leak component.
 class I_Na
          Sodium channel.
 class I_stim
          Stimulus current.
 class Membrane
          Membrane.
 

Fields in org.simBio.bio.hodgkin_huxley_1952 declared as Node
 Node I_Na.h
          gate variable (dimensionless)
 Node Membrane.I_K
          Potassium current (microA_per_cm2)
 Node Membrane.I_L
          Leak (Chloride) current (microA_per_cm2)
 Node Membrane.I_Na
          Sodium current (microA_per_cm2)
 Node Membrane.I_stim
          Stimulus current (microA_per_cm2)
 Node I_Na.m
          gate variable (dimensionless)
 Node Membrane.Vm
          membrane potential, V, initial value = -75.0 (millivolt)
 Node I_Na.Vm
          membrane potential, V, initial value = -75.0 (millivolt)
 Node I_L.Vm
          membrane potential, V, initial value = -75.0 (millivolt)
 Node I_K.Vm
          membrane potential, V, initial value = -75.0 (millivolt)
 

Uses of Node in org.simBio.bio.kurata_et_al_2005.complex
 

Classes in org.simBio.bio.kurata_et_al_2005.complex that implement Node
 class SR
           
 

Fields in org.simBio.bio.kurata_et_al_2005.complex declared as Node
 Node SR.Cai
           
 Node SR.CarelTotal
           
 Node SR.Caup
           
 Node SR.Leak
           
 Node SR.Release
           
 Node SR.Transfer
           
 Node SR.UpTake
           
 

Uses of Node in org.simBio.bio.kurata_et_al_2005.current
 

Classes in org.simBio.bio.kurata_et_al_2005.current that implement Node
 class ICab
           
 class INab
           
 class Ito
           
 

Fields in org.simBio.bio.kurata_et_al_2005.current declared as Node
 Node IpCa.Cai
           
 Node INaCa.Cai
           
 Node ICaL.Cai
           
 Node ICab.Cai
           
 Node INaCa.Cao
           
 Node ICab.Cao
           
 Node ICaL.dL
           
 Node Ito.F
           
 Node INaK.F
           
 Node INaCa.F
           
 Node INab.F
           
 Node INa.F
           
 Node IKs.F
           
 Node IKr.F
           
 Node IK1.F
           
 Node ICab.F
           
 Node ICaL.fL
           
 Node INa.h
           
 Node Ito.Ki
           
 Node INa.Ki
           
 Node IKs.Ki
           
 Node IKr.Ki
           
 Node IK1.Ki
           
 Node Ito.Ko
           
 Node INaK.Ko
           
 Node INa.Ko
           
 Node IKs.Ko
           
 Node IKr.Ko
           
 Node IK1.Ko
           
 Node IKs.n
           
 Node Ito.Nai
           
 Node INaK.Nai
           
 Node INaCa.Nai
           
 Node INab.Nai
           
 Node INa.Nai
           
 Node IKs.Nai
           
 Node Ito.Nao
           
 Node INaK.Nao
           
 Node INaCa.Nao
           
 Node INab.Nao
           
 Node INa.Nao
           
 Node IKs.Nao
           
 Node IKr.pa
           
 Node Ito.q
           
 Node Ito.R
           
 Node INaK.R
           
 Node INaCa.R
           
 Node INab.R
           
 Node INa.R
           
 Node IKs.R
           
 Node IKr.R
           
 Node IK1.R
           
 Node ICab.R
           
 Node Ito.T
           
 Node INaK.T
           
 Node INaCa.T
           
 Node INab.T
           
 Node INa.T
           
 Node IKs.T
           
 Node IKr.T
           
 Node IK1.T
           
 Node ICab.T
           
 Node Ito.Vm
           
 Node INaK.Vm
           
 Node INaCa.Vm
           
 Node INab.Vm
           
 Node INa.Vm
           
 Node IKs.Vm
           
 Node IKr.Vm
           
 Node IK1.Vm
           
 Node ICaL.Vm
           
 Node ICab.Vm
           
 

Uses of Node in org.simBio.bio.kurata_et_al_2005.flux
 

Classes in org.simBio.bio.kurata_et_al_2005.flux that implement Node
 class Leak
          leak flux (Jleak) from the uptake site of SRnet (mM/ms).
 class Release
           
 class Transfer
           
 class Uptake
           
 

Fields in org.simBio.bio.kurata_et_al_2005.flux declared as Node
 Node Uptake.Cai
          [Ca2+]i (mM)
 Node Release.Cai
           
 Node Leak.Cai
          [Ca]i (mM)
 Node Transfer.Caj
          [Ca2+]rel (mM)
 Node Transfer.Can
          [Ca2+]up (mM)
 Node Release.Carel
           
 Node Leak.Caup
          [Ca]up (mM)
 Node Release.dR
           
 Node Release.fR
           
 Node Release.ICab
           
 Node Release.ICaL
           
 Node Release.INaCa
           
 Node Release.IpCa
           
 Node Release.Vm
           
 

Uses of Node in org.simBio.bio.kurata_et_al_2005.molecule
 

Classes in org.simBio.bio.kurata_et_al_2005.molecule that implement Node
 class CaBuffer_RK
          Calculate using ordinary differential equation, working with analytic buffer.
 

Fields in org.simBio.bio.kurata_et_al_2005.molecule declared as Node
 Node CaBuffer_RK.Ca
          free Ca concentration (mM)
 Node CaBuffer_RK.CaTotal
          total Ca concentration (mM)
 

Uses of Node in org.simBio.bio.kuratomi_et_al_2003.current.carrier
 

Classes in org.simBio.bio.kuratomi_et_al_2003.current.carrier that implement Node
 class Carrier
          Abstract class for ping-pong model of the carrier.
 

Fields in org.simBio.bio.kuratomi_et_al_2003.current.carrier declared as Node
 Node Carrier.amplitude
          amplitude factor (A/F)
 Node INaCa.Cai
          concentration of intracellular Calcium[mM]
 Node INaCa.Cao
          concentration of intracellular Calcium[mM]
 Node Carrier.gate
          reduced 2-state gate
 Node INaCa.inActivation
          inactivation gate
 Node INaCa.Nai
          concentration of intracellular Sodium [mM]
 Node INaCa.Nao
          concentration of intracellular Sodium [mM]
 Node INaCa.T
          absolute temperature[K]
 Node INaCa.Vm
          membrane potential of cell[mV]
 

Uses of Node in org.simBio.bio.kuzumoto_et_al_2007.contraction
 

Classes in org.simBio.bio.kuzumoto_et_al_2007.contraction that implement Node
 class CrossBridgeForce
          Cross bridge force of NL contraction model, Negroni JA and Lascano EC.
 class CrossBridgeLength
          Length of cross bridge of NL contraction model, Negroni JA and Lascano EC.
 class ForceEquilibrium
          Calculation of force equilibrium.
 class IsotonicContraction
          Calculation of half sarcomere length in isotonic experiments.
 class ParallelElementForce
          Parallel element force of NL contraction model, Negroni JA and Lascano EC.
 class Troponin
          troponin of Negroni and Lascano contraction model.
 class Troponinmit
          Troponin state transition of Cardiac Muscle Model by Negroni and Lascano.
 

Fields in org.simBio.bio.kuzumoto_et_al_2007.contraction declared as Node
 Node Troponinmit.ADP
           
 Node Troponin.ATP
           
 Node Troponin.Ca
           
 Node Troponin.CaTotal
           
 Node Troponin.dATP
           
 Node Troponin.dXdt
           
 Node CrossBridgeLength.dXdt
          derivative value of inextensibleLength
 Node ForceEquilibrium.forceExt
           
 Node Troponin.L
           
 Node IsotonicContraction.L
           
 Node CrossBridgeLength.L
          half sarcomere length
 Node Troponinmit.Pi
           
 Node Troponin.T
           
 Node Troponin.TCa
           
 Node Troponin.TCaCB
           
 Node CrossBridgeForce.TCaCB
           
 Node Troponin.TCB
           
 Node CrossBridgeForce.TCB
           
 Node CrossBridgeLength.X
          half length of thick filament + thin filament length over the non-overlap zone
 Node CrossBridgeForce.X
           
 

Uses of Node in org.simBio.bio.kuzumoto_et_al_2007.current
 

Classes in org.simBio.bio.kuzumoto_et_al_2007.current that implement Node
 class IRyR
          Calcium releasing channel on SR.
 

Fields in org.simBio.bio.kuzumoto_et_al_2007.current declared as Node
 Node IRyR.CaDiadic
          local Ca2+ concentration near the mouth of RyR channel.
 Node IRyR.Cai
          intracellular calcium concentration (mM)
 Node IRyR.Cao
          calcium concentration in SR release site (mM)
 Node IRyR.CICRfactor
           
 Node IRyR.close
          close state probability
 Node IRyR.K1
           
 Node IRyR.k1xclose
           
 Node IRyR.K2
           
 Node IRyR.K3
           
 Node IK1.Mg
          the concentration of Mg2+ (mM)
 Node IRyR.open
          open state probability
 Node IK1.Pspm
          the probability of being in the SPM block state
 Node IK1.SPM
          the concentration of Spermine (mM)
 

Uses of Node in org.simBio.bio.kuzumoto_et_al_2007.current.carrier
 

Classes in org.simBio.bio.kuzumoto_et_al_2007.current.carrier that implement Node
 class ICaPump
          Ca pump on network SR.
 class IPMCA
          Ca pump on cell membrane.
 

Fields in org.simBio.bio.kuzumoto_et_al_2007.current.carrier declared as Node
 Node IPMCA.ADP
           
 Node INaK.ADP
           
 Node ICaPump.ADP
           
 Node IPMCA.ATP
          intracellular ATP concentration (mM)
 Node INaK.ATP
          concentration of ATP[mM]
 Node ICaPump.ATP
          intracellular ATP concentration (mM)
 Node IPMCA.CaCaM
           
 Node IPMCA.Cai
          Ca2+ concentration in cytoplasm (mM)
 Node ICaPump.Cai
          Ca2+ concentration in cytoplasm (mM)
 Node IPMCA.Cao
          Ca2+ concentration in external solution (mM)
 Node ICaPump.Cao
          Ca2+ concentration in SR (mM, uptake site compartment)
 Node INaK.Couabain
          ouabain concentration
 Node IPMCA.dATP
          instantaneous rate of the ATP consumption (M/s)
 Node INaK.dATP
          differential ATP [mM/msec]
 Node ICaPump.dATP
          variation of ATP concentration (mM/ms)
 Node INaK.Ki
          concentration of intracellular Potassium[mM]
 Node ICaPump.KmCaCp
          mM, dissociation const for Ca binding within cytoplasm
 Node INaK.Ko
          concentration of extracellular Potassium[mM]
 Node INaK.Nai
          concentration of intracellular Sodium[mM]
 Node INaK.Nao
          concentration of extracellular Sodium[mM]
 Node IPMCA.Pi
           
 Node INaK.Pi
           
 Node ICaPump.Pi
           
 Node IPMCA.PKA
          PKA type I concentration (mM)
 Node INaK.PKA
          PKA phosphorylation parameter *
 Node ICaPump.PLBphos
          ratio of phosphorylated fraction of phospholamban
 Node INaK.T
          absolute temperature[K]
 Node IPMCA.Vi
          cell volume accessible for ion diffusion
 Node INaK.Vi
          cell volume accessible for ion diffusion[um^3]
 Node ICaPump.Vi
          cell volume accessible for ion diffusion
 Node INaK.Vm
          membrane potential of cell[mV]
 

Uses of Node in org.simBio.bio.kuzumoto_et_al_2007.current.cf
 

Classes in org.simBio.bio.kuzumoto_et_al_2007.current.cf that implement Node
 class ICFTR
          Cystic fibrosis transmembrane conductance regulator Cl- channel current.
 

Fields in org.simBio.bio.kuzumoto_et_al_2007.current.cf declared as Node
 Node ICFTR.ATP
          concentration of intracellular ATP [mM]
 Node ICaL.ATP
          intracellular ATP concentration (mM)
 Node IKs.Ca
          intracellular Ca2+ concentration
 Node ICaL.CaDiadic
          local Ca2+ concentration near the mouth of L-type Ca channel (mM)
 Node ICaL.Cai
          intracellular Ca2+ concentration (mM)
 Node ICaL.gate
          ultra-slow gate probability
 Node IKs.gate1
          the open probability of voltage-dependent gate
 Node IKs.gate2
          the open probability of [Ca2+]i-dependent gate
 Node IKs.gateC2
          the C2 state probability of [Ca2+]i-dependent gate
 Node IKs.KCNQ1
           
 Node IKs.KCNQ1free
           
 Node IKs.KCNQ1p
           
 Node IKs.KCNQ1p_ratio
           
 Node ICaL.pAI
          AI state probability for voltage-dependent gate
 Node ICaL.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pC
          C state probability for calcium-dependent gate
 Node ICaL.PCa
           
 Node ICaL.PCl
           
 Node ICaL.PK
           
 Node IKs.PKA
           
 Node ICFTR.PKA
          PKA catalitic domain I concentration
 Node ICaL.PKA
          PKA catalitic domain I concentration
 Node ICaL.PKA_fac
           
 Node ICaL.PNa
           
 Node IKs.POpen
           
 Node ICFTR.POpen
          open probability
 Node ICaL.pRP
          PR state probability for voltage-dependent gate
 Node ICaL.pU
          U state probability for calcium-dependent gate
 Node ICaL.pUCa
          UCa state probability for calcium-dependent gate
 Node ICaL.SingleCurrentAMP
          to see single current amplitude
 Node IKs.Vm
          Membrane Potential (mV)
 Node ICaL.Vm
          membrane potential (mV)
 

Uses of Node in org.simBio.bio.kuzumoto_et_al_2007.function
 

Classes in org.simBio.bio.kuzumoto_et_al_2007.function that implement Node
 class Average
           
 class ConcentrationAMP
          calculation of AMP concentration (conformed to mass conservation law).
 class KoDependency_IK1
          Updated [K]o dependency calculation for IK1.
 class PA2MS
          Average and Convert pA to M/S.
 

Fields in org.simBio.bio.kuzumoto_et_al_2007.function declared as Node
 Node ConcentrationAMP.ADPtotal
           
 Node ConcentrationAMP.ATPtotal
           
 Node ConcentrationAMP.cAMP
           
 Node KoDependency_IK1.Ko
          concentration of extracellular potassium [mM]
 Node Average.sum
          total amount
 Node Average.target
          target to sum
 Node PA2MS.Vi
          internal volume (um^3)
 

Uses of Node in org.simBio.bio.kuzumoto_et_al_2007.molecule
 

Classes in org.simBio.bio.kuzumoto_et_al_2007.molecule that implement Node
 class BetaAR_Gs
          betaAR and Gs signaling module.
 class CAMP
          cAMP module.
 class PKA
          PKA module.
 class PLB
          Phospholamban module.
 

Fields in org.simBio.bio.kuzumoto_et_al_2007.molecule declared as Node
 Node PKA.A2RCI
          A2RCI concentration (mM)
 Node PKA.A2RI
          A2RI concentration (mM)
 Node CAMP.AC
          Adenylate cyclase concentration (mM)
 Node PLB.ADP
          ADP concentration (mM)
 Node PKA.ARCI
          ARCI concentration (mM)
 Node PLB.ATP
          ATP concentration (mM)
 Node CAMP.ATP
          ATP concentration (mM)
 Node BetaAR_Gs.beta1_AR
          free receptor concentration
 Node BetaAR_Gs.beta1_AR_S301
          site of 301 phosphorylated receptor concentration
 Node BetaAR_Gs.beta1_AR_S464
          site of 464 phosphorylated receptor concentration
 Node BetaAR_Gs.beta1_ARact
          active receptor concentration
 Node PKA.cAMP
          cAMP concentration (mM)
 Node CAMP.cAMP
          Phosphodiesterase concentration (mM)
 Node PKA.cAMPtot
          total cAMP concentration (mM)
 Node CAMP.cAMPtot
          total cAMP concentration (mM)
 Node BetaAR_Gs.d_Gs_alpha_GTPtot
          Multi newton raphson function
 Node BetaAR_Gs.Gs
          free gs_protein concentration
 Node BetaAR_Gs.Gs_alpha_GDP
          Multi newton raphson function
 Node CAMP.Gs_alpha_GTP
          Gs_alpha GTP-form concentration (mM)
 Node CAMP.Gs_alpha_GTP_AC
          Gs_alpha_GTP and AC complex concentration (mM)
 Node CAMP.Gs_alpha_GTPtot
          Gs_alpha_GTP total concentration (mM)
 Node BetaAR_Gs.Gs_alpha_GTPtot
          Multi newton raphson function
 Node BetaAR_Gs.Gs_beta_gamma
          gs_beta_gamma_protein concentration
 Node BetaAR_Gs.Gstot
          total gs_protein concentration
 Node PLB.Inhib1
          inhibitor-1 concentration (mM)
 Node PLB.Inhib1p
          phosphorylated inhibitor-1 concentration (mM)
 Node PLB.Inhib1ptot
          phosphorylated inhibitor-1 total (Inhib1p + PP1_Inhib) concentration (mM)
 Node BetaAR_Gs.Iso
          total ligand concentration
 Node BetaAR_Gs.L
          free ligand concentration
 Node BetaAR_Gs.LR
          ligand-receptor complex concentration
 Node BetaAR_Gs.LRG
          ligand-receptor-gs_protein complex concentration
 Node CAMP.PDE
          Phosphodiesterase concentration (mM)
 Node PLB.PKA
          PKA catalytic domain I concentration (mM)
 Node PKA.PKA
          PKA concentration (mM)
 Node BetaAR_Gs.PKA
          PKA catalitic domain I
 Node PKA.PKACI_PKI
          PKA and PKI complex concentration (mM)
 Node PKA.PKI
          protein kinase inhibitor (mM)
 Node PLB.PLB
          PLB concentration (mM)
 Node PLB.PLBp
          phosphorylated PLB concentration (mM)
 Node PLB.PLBphos
          percent of PLB phosphorylation
 Node PLB.PP1
          protein phosphatase-1 concentration (mM)
 Node PLB.PP1_Inhib1p
          protein phosphatase-1 and phosphorylated inhibitor-1 complex concentration (mM)
 Node PKA.RCI
          RCI concentration (mM)
 Node BetaAR_Gs.RG
          receptor-gs_protein complex concentration
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.complex
 

Classes in org.simBio.bio.matsuoka_et_al_2003.complex that implement Node
 class ATPsynthesis
          The lumped model of ATP synthesis.
 

Fields in org.simBio.bio.matsuoka_et_al_2003.complex declared as Node
 Node ATPsynthesis.ATP
          ATP concentration ([ATP]).
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.current
 

Classes in org.simBio.bio.matsuoka_et_al_2003.current that implement Node
 class MembraneTransporter
          Abstract class of membrane transporters.
 

Fields in org.simBio.bio.matsuoka_et_al_2003.current declared as Node
 Node Diffusion.Cai
          concentration of intracellular Ca2+ [mM]
 Node Diffusion.Cao
          concentration of extracellular Ca2+ [mM]
 Node MembraneTransporter.CCa
          to see Ca current component
 Node MembraneTransporter.CK
          to see K current component
 Node MembraneTransporter.CNa
          to see Na current component
 Node MembraneTransporter.current
           
 Node MembraneTransporter.currentCa
           
 Node MembraneTransporter.currentK
           
 Node MembraneTransporter.currentNa
           
 Node Diffusion.Ki
          concentration of intracellular K+ [mM]
 Node Diffusion.Ko
          concentration of extracellular K+ [mM]
 Node Diffusion.Nai
          concentration of intracellular Na+ [mM]
 Node Diffusion.Nao
          concentration of extracellular Na+ [mM]
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.current.carrier
 

Fields in org.simBio.bio.matsuoka_et_al_2003.current.carrier declared as Node
 Node Carrier.amplitude
          amplitude factor (A/F)
 Node INaK.ATP
          concentration of ATP[mM]
 Node ICaPump.ATP
          intracellular ATP concentration (mM)
 Node INaK.ATPconsumingRate
          rate of ATP consumption
 Node ICaPump.ATPconsumingRate
          consuming rate of ATP; (mM/min)
 Node INaK.ATPconsumption
          ATP consumption[mM]
 Node ICaPump.ATPconsumption
          ATP consumed at the time t (mM)
 Node INaCa.Cai
          concentration of intracellular Calcium[mM]
 Node ICaPump.Cai
          Ca2+ concentration in cytoplasm (mM)
 Node INaCa.Cao
          concentration of intracellular Calcium[mM]
 Node ICaPump.Cao
          Ca2+ concentration in SR (mM, uptake site compartment)
 Node INaK.dATP
          differential ATP [mM/msec]
 Node ICaPump.F
          Faradey constant
 Node Carrier.gate
          reduced 2-state gate
 Node INaK.Ki
          concentration of intracellular Potassium[mM]
 Node INaK.Ko
          concentration of extracellular Potassium[mM]
 Node INaK.Nai
          concentration of intracellular Sodium[mM]
 Node INaCa.Nai
          concentration of intracellular Sodium [mM]
 Node INaK.Nao
          concentration of extracellular Sodium[mM]
 Node INaCa.Nao
          concentration of intracellular Sodium [mM]
 Node INaK.T
          absolute temperature[K]
 Node INaCa.T
          absolute temperature[K]
 Node INaK.Vi
          cell volume accessible for ion diffusion[um^3]
 Node ICaPump.Vi
          cell volume accessible for ion diffusion
 Node INaK.Vm
          membrane potential of cell[mV]
 Node INaCa.Vm
          membrane potential of cell[mV]
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.current.cf
 

Classes in org.simBio.bio.matsuoka_et_al_2003.current.cf that implement Node
 class ILCCa
          Calcium activated Non-Selective Cation current.
 

Fields in org.simBio.bio.matsuoka_et_al_2003.current.cf declared as Node
 Node Ist.activation
          gate variable
 Node ICaT.activation
          open probability of activation gate
 Node ICaL.ATP
          intracellular ATP concentration (mM)
 Node ICaL.CaDiadic
          local Ca2+ concentration near the mouth of L-type Ca channel (mM)
 Node Ist.Cai
          intracellular calcium concentration (mM)
 Node ILCCa.Cai
          intracellular calcium concentration (mM)
 Node ICaL.Cai
          intracellular calcium concentration (mM)
 Node Iha.closedState1
           
 Node Iha.closedState2
           
 Node CfChannel.constantFieldCa
          Ca2+ flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldK
          K+ flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldNa
          Na+ flux calculated by constant field theory [mM]
 Node INa.gate
          ultra-slow gate
 Node ICaL.gate
          ultra-slow gate probability
 Node Ito.gate1
          activation gating variable
 Node Ito.gate2
          inactivation gating variable
 Node IKpl.GK
          channel conductance
 Node Ist.inactivation
          gate variable
 Node ICaT.inactivation
          open probability of inactivation gate
 Node Iha.openState1
           
 Node Iha.openState2
           
 Node INa.pAI
          AI state probability for voltage-dependent gate
 Node ICaL.pAI
          AI state probability for voltage-dependent gate
 Node INa.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pC
          C state probability for calcium-dependent gate
 Node INa.pRP
          RP state probability for voltage-dependent gate
 Node ICaL.pRP
          PR state probability for voltage-dependent gate
 Node ICaL.pU
          U state probability for calcium-dependent gate
 Node ICaL.pUCa
          UCa state probability for calcium-dependent gate
 Node Ist.slowInactivation
          gate variable
 Node ICaL.sumCa
          integration of ICaL
 Node Ito.Vm
          membrane potential (mV)
 Node Ist.Vm
          membrane potential (mV)
 Node INa.Vm
          membrane potential (mV)
 Node IKpl.Vm
          membrane potential (mV)
 Node Iha.Vm
           
 Node ICaT.Vm
          membrane potential
 Node ICaL.Vm
          membrane potential (mV)
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.current.channel
 

Classes in org.simBio.bio.matsuoka_et_al_2003.current.channel that implement Node
 class Channel
          template of Channel.
 

Fields in org.simBio.bio.matsuoka_et_al_2003.current.channel declared as Node
 Node IRyR.CaDiadic
          local Ca2+ concentration near the mouth of RyR channel
 Node IRyR.Cai
          intracellular calcium concentration (mM)
 Node IRyR.Cao
          extracellular calcium concentration (mM)
 Node IRyR.close
          close state probability
 Node IRyR.open
          open state probability
 Node IRyR.sumCa
          integration of IRyR
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.current.pipette
 

Classes in org.simBio.bio.matsuoka_et_al_2003.current.pipette that implement Node
 class CurrentClamp
          current clamp, external current in the RC membrane model.
 class Pipette
          external current in the RC membrane model.
 class VoltageClamp
          voltage clamp protocol.
 

Fields in org.simBio.bio.matsuoka_et_al_2003.current.pipette declared as Node
 Node VoltageClamp.observedCurrent
          current through the cell membrane
 Node VoltageClamp.timeStep
          time step for integral calculation
 Node VoltageClamp.Vm
          membrane potential
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.current.potassium
 

Classes in org.simBio.bio.matsuoka_et_al_2003.current.potassium that implement Node
 class IKATP
          ATP-sensitive potassium current.
 

Fields in org.simBio.bio.matsuoka_et_al_2003.current.potassium declared as Node
 Node IK1.alfa
          rate constant
 Node IKATP.ATPi
          concentration of intracellular ATP[mM]
 Node IKs.Ca
          intracellular Ca2+ concentration
 Node IKACh.gate
           
 Node IK1.gate
          gate, blocked by polyamine (time dependent compornent)
 Node IKs.gate1
          the open probability of voltage-dependent gate
 Node IKr.gate1
          activation gating variable (the rapid component)
 Node IKs.gate2
          the open probability of [Ca2+]i-dependent gate
 Node IKr.gate2
          activation gating variable (the slow component)
 Node IKr.gate3
          inactivation gating variable
 Node PureKchannel.permeabilityK
          channel permeability for potassium
 Node PureKchannel.reversalPotential
          reversal potential
 Node PureKchannel.Vm
          membrane potential (mV)
 Node IKs.Vm
          Membrane Potential(mV)
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.function
 

Classes in org.simBio.bio.matsuoka_et_al_2003.function that implement Node
 class Charge
          keep whole cell current from external solution.
 class ConstantField
          calculate constant field.
 class Diffusion_a
          The first order ordinary differential equation is solved using analytic equation.
 class Diffusion_t
          The first order ordinary differential equation is solved using analytic equation.
 class KoDependency
          dependency of extracellular potassium concentration.
 class RateConstant
          function, c1/(c2*exp((x+c3)/c4)+c5*exp((x+c6)/c7))
 class RateConstantK
           
 class RateConstantVm
           
 class ReversalPotential
          calculate reversal potential of the specific ion.
 class Volume
           
 

Fields in org.simBio.bio.matsuoka_et_al_2003.function declared as Node
 Node Charge.Cm
          membrane capacitance (pF)
 Node Diffusion_a.dt
           
 Node ReversalPotential.in
          intracellular ion concentration (mM)
 Node Current.in
          internal ion concentration (mM)
 Node ConstantField.in
          intracellular ion concentration (mM)
 Node KoDependency.Ko
          concentration of extracellular potassium [mM]
 Node ReversalPotential.out
          extracellular ion concentration (mM)
 Node Current.out
          external ion concentration (mM)
 Node ConstantField.out
          extracellular ion concentration (mM)
 Node Volume.ratio
          ratio
 Node RateConstantK.reversalPotential
           
 Node Diffusion_t.t
           
 Node ReversalPotential.T
          the absolute temperature (K)
 Node ConstantField.T
          the absolute temperature (K)
 Node Diffusion_t.target
           
 Node Diffusion_a.target
           
 Node Volume.total
          total value
 Node Current.Vi
          internal volume (um^3)
 Node RateConstantVm.Vm
           
 Node RateConstantK.Vm
           
 Node ConstantField.Vm
          membrane potential (mV)
 Node Charge.Vm
          membrane potential (mV)
 Node Current.Vo
          external volume (um^3)
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.molecule.buffer
 

Classes in org.simBio.bio.matsuoka_et_al_2003.molecule.buffer that implement Node
 class Buffer
          abstract of buffer
 

Fields in org.simBio.bio.matsuoka_et_al_2003.molecule.buffer declared as Node
 Node Buffer.free
          free concentration (mM)
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.molecule.buffer.Ca
 

Classes in org.simBio.bio.matsuoka_et_al_2003.molecule.buffer.Ca that implement Node
 class Analytic
          instantaneous Ca buffer, using analytic equation as for Zeng et al, 1995 J.
 class Analytic_RK
          instantaneous Ca buffer using analytic equation as for Zeng et al, 1995.
 class InstantCaBuffer
          instantaneous Ca buffer, iterative method.
 class ODE
          Ca buffer, using ordinary differential equation (ODE).
 class TroponinNL
          Troponin state transition of Cardiac Muscle Model by Negroni and Lascano.
 class TroponinNL_RK
          Troponin state transition of Negroni and Lascano contraction model for Runge-Kutta.
 

Fields in org.simBio.bio.matsuoka_et_al_2003.molecule.buffer.Ca declared as Node
 Node TroponinNL.ATP
           
 Node TroponinNL.ATPconsumingRate
           
 Node TroponinNL.ATPconsumption
           
 Node TroponinNL.Ca
           
 Node ODE.Ca
          free Ca2+ concentration (mM)
 Node InstantCaBuffer.Ca
           
 Node Analytic_RK.Ca
          free calcium concentration (mM)
 Node Analytic.Ca
           
 Node TroponinNL_RK.CaTotal
          total Ca concentration
 Node Analytic_RK.CaTotal
          total calcium concentration (free calcium + buffered calcium + influx/efflux calcium) (mM)
 Node TroponinNL.TCa
           
 Node TroponinNL.TCaCB
           
 Node TroponinNL.TCB
           
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2003.molecule.enzyme
 

Classes in org.simBio.bio.matsuoka_et_al_2003.molecule.enzyme that implement Node
 class CrossBridgeNL
          Cross bridge kinetics of Cardiac Muscle Model by Negroni and Lascano.
 class IsometricContraction
          Isometric Contraction
 

Fields in org.simBio.bio.matsuoka_et_al_2003.molecule.enzyme declared as Node
 Node CrossBridgeNL.forceCB
           
 Node CrossBridgeNL.forceExt
           
 Node CrossBridgeNL.h
           
 Node CrossBridgeNL.halfsarcomerelength
           
 Node CrossBridgeNL.InextensibleLength
           
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.current.carrier
 

Fields in org.simBio.bio.matsuoka_et_al_2004.current.carrier declared as Node
 Node INaK.ADP
           
 Node ICaPump.ADP
           
 Node INaK.Pi
           
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.exp
 

Classes in org.simBio.bio.matsuoka_et_al_2004.exp that implement Node
 class Anoxia
          Anoxia condition on ventricular cell model was occured to regulate the oxygen concentration.
 

Fields in org.simBio.bio.matsuoka_et_al_2004.exp declared as Node
 Node Anoxia.elapsedTime
           
 Node Anoxia.oxygen
           
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.function
 

Classes in org.simBio.bio.matsuoka_et_al_2004.function that implement Node
 class Acidity
          calculation of pH (acidity) of the optional solution.
 class ConcentrationCyta2
          Calculation of the concentration of Cytochrome a2+
 class ConcentrationPi
          calculation of iorganic phosphate concentration (conformed to mass conservation law)
 class GradientP
          proton driving force
 class GradientpH
          proton gradient on mitochondrial inner membrane.
 class MassConservation
          calculation of molecular concentration conformed to mass conservation law
 class MassConservation2
          calculation of molecular concentration conformed to mass conservation law
 class MembranePotential
          membrane potential on mitochondrial inner membrane.
 class MetalFreeConcentration
          free concentration of metal affinity molecule
 class PartialPotential
          calcuration of partial potential.
 class PressureToConcentration
          calculation of concentration of gas-molecule from partial pressure.
 class RedoxPotential
          Calculation of the redox potential.
 class RedoxPotentialCyta
          Calculation of the redox potential of cytochrome a
 class VolumeRatio
          Calculation of volume ratio between cell and organella.
 class Zvalue
          calculation of z value.
 

Fields in org.simBio.bio.matsuoka_et_al_2004.function declared as Node
 Node ConcentrationAMP.AdenosineTotal
           
 Node ConcentrationPi.ADPtcell
          total ADP concentration in cytosol
 Node ConcentrationAMP.ADPtcell
           
 Node ConcentrationPi.ADPtmit
          total ADP concentration in mitochondria
 Node ConcentrationPi.AMP
          AMP concentration in cytosol
 Node ConcentrationPi.ATPtcell
          total ATP concentration in cytosol
 Node ConcentrationAMP.ATPtcell
           
 Node ConcentrationPi.ATPtmit
          total ATP concentration in mitochondria
 Node RedoxPotentialCyta.dP
          proton gradient
 Node MembranePotential.dP
          proton driving force
 Node MembranePotential.dpH
          proton gradient of mitochondrial matrix to cytosol
 Node GradientP.dpH
          proton gradient between cytosol and matrix
 Node ConcentrationCyta2.Ema
          redox potential of cytochrome a
 Node RedoxPotentialCyta.Emc
          redox potential of cytochrome c
 Node MetalFreeConcentration.metal
          metal ion concentration
 Node MassConservation.other
          other concentration of the same molecular group
 Node PressureToConcentration.PartialPressure
           
 Node ConcentrationPi.PCr
          phosphocreatine concentration in cytosol
 Node GradientpH.pHcell
          pH of cytosol
 Node GradientpH.pHmit
          pH of mitochondrial matrix
 Node ConcentrationPi.Pimit
          iorganic phosphate concentration in mitochondria
 Node RedoxPotential.Product
          product and substrate concentrations of reaction
 Node Acidity.Proton
           
 Node VolumeRatio.ratio
          volume ratio
 Node ConcentrationPi.Rcm
          volume ratio between cytosol and mitochondrial matrix
 Node RedoxPotential.Substrate
          product and substrate concentrations of reaction
 Node PartialPotential.total
          membrane potential
 Node MetalFreeConcentration.total
          total concentration
 Node MassConservation.total
          total concentration
 Node ConcentrationCyta2.Zvalue
          Z = 2.303 * R * T / F
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.function.chemical
 

Classes in org.simBio.bio.matsuoka_et_al_2004.function.chemical that implement Node
 class CN
          effect of CN addition.
 class FCCP
          effect of FCCP addition.
 

Fields in org.simBio.bio.matsuoka_et_al_2004.function.chemical declared as Node
 Node CN.CN
          cyanide concentration
 Node FCCP.FCCP
          FCCP concentration
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.molecule
 

Classes in org.simBio.bio.matsuoka_et_al_2004.molecule that implement Node
 class SubstrateDehydrogenation
          NADH dehydrogenation.
 

Fields in org.simBio.bio.matsuoka_et_al_2004.molecule declared as Node
 Node Diffusion.external
          external concentration
 Node Diffusion.internal
          internal concentration
 Node SubstrateDehydrogenation.NAD
          NAD+ concentration
 Node SubstrateDehydrogenation.NADH
          NADH concentration
 Node SubstrateDehydrogenation.Rcm
          ratio of cytosol active volume and mitochondria volume
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.molecule.buffer
 

Classes in org.simBio.bio.matsuoka_et_al_2004.molecule.buffer that implement Node
 class HBuffering
          Buffering capacity coefficient for H+ (rbuffer).
 

Fields in org.simBio.bio.matsuoka_et_al_2004.molecule.buffer declared as Node
 Node HBuffering.pH
          a measure of the activity of hydrogen ions (H+) in a solution
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.molecule.buffer.Ca
 

Fields in org.simBio.bio.matsuoka_et_al_2004.molecule.buffer.Ca declared as Node
 Node TroponinNL_RK.ADP
           
 Node TroponinNL_RK.Pi
           
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.molecule.enzyme
 

Classes in org.simBio.bio.matsuoka_et_al_2004.molecule.enzyme that implement Node
 class AK
          Adenylate Kinase (AK) System
 class CK
          Creatine Kinase (CK) System.
 

Fields in org.simBio.bio.matsuoka_et_al_2004.molecule.enzyme declared as Node
 Node AK.ADPfree
          free ADP concentration in cytosol
 Node AK.ADPmg
          Mg binding ADP concentration in cytosol
 Node CK.ADPtotal
          total ADP concentration in cytosol
 Node AK.ADPtotal
          total ADP concentration in cytosol
 Node AK.AMP
          AMP concentration in cytosol
 Node AK.ATPmg
          Mg binding ATP concentration in cytosol
 Node CK.ATPtotal
          total ATP concentration in cytosol
 Node AK.ATPtotal
          total ATP concentration in cytosol
 Node CK.Cr
          creatine concentration in cytosol
 Node CK.PCr
          phosphocreatine concentration in cytosol
 Node CK.Proton
          proton concentration in cytosol
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.molecule.RespiratoryChain
 

Classes in org.simBio.bio.matsuoka_et_al_2004.molecule.RespiratoryChain that implement Node
 class ATPsynthase
          Mitochondrial F1/F0 ATP Synthase.
 class ComplexI
          NADH-Ubiquinone oxidoreductase (complex I).
 class ComplexIII
          Cytochrome bc1 Complex (complex III).
 class ComplexIV
          Cytochrome c Oxidase (complex IV).
 class OxidativePhosphorylation
          Differential equation for reactions of oxidattive phosphorylation.
 

Fields in org.simBio.bio.matsuoka_et_al_2004.molecule.RespiratoryChain declared as Node
 Node ComplexIV.a2
          cytochrome a2+ (reduced) concentration
 Node ATPsynthase.ADPtmito
          total ADP concentration in mitochondrial matrix
 Node ATPsynthase.ATPtmito
          total ATP concentration in mitochondrial matrix
 Node ComplexIV.c2
          cytochrome c2+ (reduced) concentration
 Node OxidativePhosphorylation.Cytc2
          cytochrome c2+ (reduced) concentration
 Node ComplexIII.dP
          proton driving force of mitochondrial inner membrane
 Node ComplexI.dP
          proton driving force on mitochondrial inner membrane
 Node ATPsynthase.dP
          proton driving force on mitochondrial inner membrane
 Node ComplexIII.Emc
          redox potential for cytochrome c
 Node ComplexI.EmN
          redox potential for NADH
 Node ComplexIII.EmU
          redox potential for ubiquinone
 Node ComplexI.EmU
          redox potential for ubiquinone
 Node ATPsynthase.Hcell
          proton concentration in cytosol
 Node OxidativePhosphorylation.Hmito
          proton concentration in mitochondrial matrix
 Node ATPsynthase.Hmito
          proton concentration in mitochondrial matrix
 Node ComplexIV.kC4
          rate constant of complex IV
 Node OxidativePhosphorylation.NADH
          mitochondrial NADH concentration
 Node ComplexIV.O2
          oxygen concentration
 Node OxidativePhosphorylation.Oxygen
          oxygen concentration
 Node ATPsynthase.Pitmito
          inorganic phosphate concentration in mitochondrial matrix
 Node OxidativePhosphorylation.rbuffermito
          buffering capacity for proton in mitochondrial matrix
 Node ATPsynthase.rbuffermito
          buffering capacity for proton in mitochondrial matrix
 Node OxidativePhosphorylation.Rcm
          ratio of cytosol volume and mitochondria volume
 Node ATPsynthase.Rcm
          ratio of cytosol volume and mitochondria volume
 Node OxidativePhosphorylation.UQH2
          ubiquinol (UQH2) concentration
 Node OxidativePhosphorylation.vC1
          rate of complex I
 Node OxidativePhosphorylation.vC3
          rate of complex III
 Node OxidativePhosphorylation.vC4
          rate of complex IV
 

Uses of Node in org.simBio.bio.matsuoka_et_al_2004.molecule.Transporter
 

Classes in org.simBio.bio.matsuoka_et_al_2004.molecule.Transporter that implement Node
 class ANT
          ADP/ATP carrier, ADP/ATP translocase, SLC25A4.
 class PhosphateCarrier
          Phosphate Transporter.
 class ProtonLeak
          Proton leak from cytosol to intremitochondoria.
 

Fields in org.simBio.bio.matsuoka_et_al_2004.molecule.Transporter declared as Node
 Node ANT.ADPfcell
          Mg free ADP concentration in cytosol (mM)
 Node ANT.ADPfmito
          Mg free ADP concentration in mitohocndria (mM)
 Node ANT.ADPtcell
          total ADP concentration in cytosol (mM)
 Node ANT.ATPfcell
          Mg free ATP concentration in cytosol (mM)
 Node ANT.ATPfmito
          Mg free ATP concentration in mitohocndria (mM)
 Node ANT.ATPtcell
          total ATP concentration in cytosol (mM)
 Node ANT.ATPtmito
          total ATP concentration in mitohocndria (mM)
 Node ProtonLeak.dP
          proton gradient of mitohocndrial inner membrane
 Node ANT.dPsicell
          membrane potential at matrix side of mitochondrial inner membrane (mV)
 Node ANT.dPsimito
          membrane potential at matrix side of mitochondrial inner membrane (mV)
 Node ProtonLeak.Hcell
          proton concentration in cytosol (mM)
 Node PhosphateCarrier.Hcell
          proton concentration in cytosol (mM)
 Node ProtonLeak.Hmito
          proton concentration in mitohocndria (mM)
 Node PhosphateCarrier.Hmito
          proton concentration in mitochondrial matrix (mM)
 Node ANT.Hmito
          proton concentration in mitohocndria (mM)
 Node ProtonLeak.kLK1
          rate constant of proton leak (mM/msec)
 Node PhosphateCarrier.pHcell
          pH in cytosol
 Node PhosphateCarrier.pHmito
          pH in mitochondrial matrix
 Node PhosphateCarrier.Pitcell
          inorganic phosphate concentration in cytosol (mM)
 Node PhosphateCarrier.Pitmito
          inorganic phosphate concentration in mitochondrial matrix (mM)
 Node ProtonLeak.rbuffermito
          buffering capacity for proton in mitochondrial matrix
 Node PhosphateCarrier.rbuffermito
          buffering capacity for proton in mitochondrial matrix
 Node ANT.rbuffermito
          buffering capacity for proton in mitochondrial matrix
 Node ProtonLeak.Rcm
          ratio of cytosol volume and mitochondria volume
 Node PhosphateCarrier.Rcm
          ratio of cytosol volume and mitochondria volume
 Node ANT.Rcm
          ratio of cytosol volume and mitochondria volume
 

Uses of Node in org.simBio.bio.negroni_lascano_1996
 

Classes in org.simBio.bio.negroni_lascano_1996 that implement Node
 class CrossBridge
          Cross bridge kinetics of Cardiac Muscle Model by Negroni and Lascano.
 class Qpump
          equation 8 in the Negroni and Lascano, 1996 Qpump=Kp/(1+(Km/[Ca2+])^2)
 class Qrel
          equation 9 in the Negroni and Lascano, 1996
 

Fields in org.simBio.bio.negroni_lascano_1996 declared as Node
 Node Troponin.Ca
           
 Node Qrel.Ca
           
 Node Qpump.Ca
           
 Node Qrel.CaRest
           
 Node Troponin.dXdt
           
 Node CrossBridge.dXdt
           
 Node Qrel.elapsedTime
           
 Node CrossBridge.Fb
           
 Node CrossBridge.Fp
           
 Node Qrel.Km
           
 Node Qpump.Km
           
 Node Qrel.Kp
           
 Node Qpump.Kp
           
 Node Troponin.L
           
 Node CrossBridge.L
           
 Node Qrel.Qm
           
 Node Qrel.Qpump
           
 Node Qrel.QpumpRest
           
 Node Qrel.Qsr
           
 Node Qrel.t0
           
 Node Qrel.t1
           
 Node Troponin.TCa
           
 Node Troponin.TCaCB
           
 Node CrossBridge.TCaCB
           
 Node Troponin.TCB
           
 Node CrossBridge.TCB
           
 Node CrossBridge.X
           
 

Uses of Node in org.simBio.bio.negroni_lascano_1996.exp
 

Classes in org.simBio.bio.negroni_lascano_1996.exp that implement Node
 class LChange
          muscle length is set with the controlled step and duration
 class Model
          Cardiac Muscle Model by Negroni and Lascano.
 

Fields in org.simBio.bio.negroni_lascano_1996.exp declared as Node
 Node Model.Ca
           
 Node Model.Fb
           
 Node Model.Fp
           
 Node Model.L
           
 Node LChange.L
          muscle length
 Node Model.TCa
           
 Node Model.TCaCB
           
 Node Model.TCB
           
 Node Model.X
           
 

Uses of Node in org.simBio.bio.noble_et_al_1998
 

Fields in org.simBio.bio.noble_et_al_1998 declared as Node
 Node Model.CaCalmod
           
 Node Model.Cads
           
 Node Model.Cai
           
 Node Model.Carel
           
 Node Model.CaTrop
           
 Node Model.Caup
           
 Node Model.CrossBridge
           
 Node Model.d
           
 Node Model.E
           
 Node Model.f
           
 Node Model.f2
           
 Node Model.f2ds
           
 Node Model.FrAct
           
 Node Model.FrProd
           
 Node Model.h
           
 Node Model.ICaL
           
 Node Model.IKr
           
 Node Model.IKs
           
 Node Model.Istim
           
 Node Model.Ki
           
 Node Model.Ko
           
 Node Model.LightChain
           
 Node Model.m
           
 Node Model.Nai
           
 Node Model.r
           
 Node Model.s
           
 Node Model.Tension
           
 Node Model.xr1
           
 Node Model.xr2
           
 Node Model.xs
           
 

Uses of Node in org.simBio.bio.oka_et_al_2006.function
 

Classes in org.simBio.bio.oka_et_al_2006.function that implement Node
 class JunctionalConductance
          Calculate the junctional conductance (nS).
 class JunctionalPotential
          Calculate the trans-junctional potential between neighbouring two cells.
 

Fields in org.simBio.bio.oka_et_al_2006.function declared as Node
 Node JunctionalConductance.gj
          the unitary conductance of gap junction channels (pS)
 Node JunctionalConductance.pOpen
          the mean open probability of the gates
 Node JunctionalPotential.Vm1
          membrane potential of cell no 1
 Node JunctionalPotential.Vm2
          membrane potential of cell no 2
 

Uses of Node in org.simBio.bio.oka_et_al_2006.function.kinetics
 

Classes in org.simBio.bio.oka_et_al_2006.function.kinetics that implement Node
 class IndependentGate
          Calculate the mean open probability of the gating model consisting of multiple independent gates.
 class MultiStateModel
          Ligand-operated multi transition model.
 class RateConstantCaGate
          Calculate the forward and backward rate constans of two-state model by using time constant, pKd and Hill coefficient
 class TwoStateModel
          Two-state model.
 

Fields in org.simBio.bio.oka_et_al_2006.function.kinetics declared as Node
 Node TwoStateModel.close
          closed state probability
 Node MultiStateModel.close
          closed state probability
 Node RateConstantCaGate.k_backward
          backward rate constant
 Node RateConstantCaGate.k_forward
          forward rate constant
 Node TwoStateModel.ligand
          ligand concentration
 Node MultiStateModel.ligand
          ligand concentration
 Node TwoStateModel.open
          open state probability
 Node MultiStateModel.open
          open state probability
 Node RateConstantCaGate.pX
          p[X].
 

Uses of Node in org.simBio.bio.oka_et_al_2006.structure
 

Classes in org.simBio.bio.oka_et_al_2006.structure that implement Node
 class GapJunctionK
          Gap junction model.
 

Fields in org.simBio.bio.oka_et_al_2006.structure declared as Node
 Node GapJunction.Cm1
          membrane capacitance of cell #1 (pF)
 Node GapJunction.Cm2
          membrane capacitance of cell #2 (pS)
 Node GapJunction.conductance
          conductance of gapjunction (nS)
 Node GapJunctionK.Ki1
          intracellular K+ concentration of cell #1 (mM)
 Node GapJunctionK.Ki2
          intracellular K+ concentration of cell #2 (mM)
 Node GapJunction.Vm1
          membrane potential of cell #1 (mV)
 Node GapJunction.Vm2
          membrane potential of cell #2 (mV)
 Node GapJunctionK.volume1
          cell volume of cell #1 (um3)
 Node GapJunctionK.volume2
          cell volume of cell #2 (um3)
 

Uses of Node in org.simBio.bio.sarai_et_al_2003
 

Fields in org.simBio.bio.sarai_et_al_2003 declared as Node
 Node VoltageClamp.observedCurrent
          total current through the cell membrane (pA)
 Node VoltageClamp.Vm
          membrane potential (mV)
 

Uses of Node in org.simBio.bio.sarai_et_al_2006.current.carrier
 

Fields in org.simBio.bio.sarai_et_al_2006.current.carrier declared as Node
 Node IPMCA.ADP
          intracellular ADP concentration (mM)
 Node IPMCA.ATP
          intracellular ATP concentration (mM)
 Node IPMCA.Cai
          Ca2+ concentration in cytoplasm (mM)
 Node IPMCA.Cao
          Ca2+ concentration in external solution (mM)
 Node IPMCA.dATP
          rate of the ATP consumption (mM/ms)
 Node IPMCA.Vi
          cell volume accessible for ion diffusion
 

Uses of Node in org.simBio.bio.sarai_et_al_2006.current.cf
 

Fields in org.simBio.bio.sarai_et_al_2006.current.cf declared as Node
 Node ICaL.ATP
          intracellular ATP concentration (mM)
 Node ICaL.CaDiadic
          local Ca2+ concentration near the mouth of L-type Ca channel (mM)
 Node ICaL.Cai
          intracellular calcium concentration (mM)
 Node ICaL.gate
          ultra-slow gate probability
 Node ICaL.pAI
          AI state probability for voltage-dependent gate
 Node ICaL.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pC
          C state probability for calcium-dependent gate
 Node ICaL.pRP
          PR state probability for voltage-dependent gate
 Node ICaL.pU
          U state probability for calcium-dependent gate
 Node ICaL.pUCa
          UCa state probability for calcium-dependent gate
 Node ICaL.sumCa
          integration of ICaL
 Node ICaL.Vm
          membrane potential (mV)
 

Uses of Node in org.simBio.bio.sarai_et_al_2006.function
 

Classes in org.simBio.bio.sarai_et_al_2006.function that implement Node
 class Rate
          Rate.
 class Ratio
          Ratio.
 

Fields in org.simBio.bio.sarai_et_al_2006.function declared as Node
 Node Ratio.denominator
          denominator
 Node Ratio.numerator
          numerator
 Node Rate.sum
          total amount
 Node Rate.target
          target to sum
 

Uses of Node in org.simBio.bio.sarai_noma_2004
 

Fields in org.simBio.bio.sarai_noma_2004 declared as Node
 Node VoltageClamp.Vm
           
 

Uses of Node in org.simBio.bio.sarai_noma_2004.fourState
 

Classes in org.simBio.bio.sarai_noma_2004.fourState that implement Node
 class MonteCarlo
           
 class NaChannel
          4 state gate of fast Sodium channel calculated by Monte Carlo method and ordinary differential Equations.
 

Fields in org.simBio.bio.sarai_noma_2004.fourState declared as Node
protected  Node ODE.pAI
           
protected  Node ODE.pAP
           
protected  Node ODE.pRP
           
 

Uses of Node in org.simBio.bio.sarai_noma_2004.structure
 

Fields in org.simBio.bio.sarai_noma_2004.structure declared as Node
 Node GapJunction.Cm1
          membrane capacitance of cell #1
 Node GapJunction.Cm2
          membrane capacitance of cell #2
 Node GapJunction.Vm1
          membrane potential of cell #1
 Node GapJunction.Vm2
          membrane potential of cell #2
 

Uses of Node in org.simBio.bio.takeuchi_et_al_2006.current
 

Classes in org.simBio.bio.takeuchi_et_al_2006.current that implement Node
 class PMCA
          sarcolemmal Ca2+ pump.
 

Fields in org.simBio.bio.takeuchi_et_al_2006.current declared as Node
 Node ICaL.ATP
          intracellular ATP concentration (mM)
 Node IRyR.CaDiadic
          local Ca2+ concentration near the mouth of RyR channel
 Node ICaL.CaDiadic
          local Ca2+ concentration near the mouth of L-type Ca channel (mM)
 Node PMCA.Cai
          concentration of intracellular Ca2+ [mM]
 Node IRyR.Cai
          intracellular calcium concentration (mM)
 Node INaCa.Cai
          concentration of intracellular Ca2+ [mM]
 Node ICaL.Cai
          intracellular Ca2+ concentration (mM)
 Node INaCa.Cao
          concentration of extracellular Ca2+ [mM]
 Node IRyR.Carel
          calcium concentration in SR rel (mM)
 Node IRyR.close
          close state probability
 Node CfChannel.constantFieldCa
          Ca2+ flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldCl
          Cl- flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldK
          K+ flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldNa
          Na+ flux calculated by constant field theory [mM]
 Node ICaL.gate
          ultra-slow gate probability
 Node INaCa.inActivation1
          I1 probability for inactivation gate 1 (Na-dependent)
 Node INaCa.inActivation2
          I2 probability for inactivation gate 2 (Ca-dependent)
 Node INaCa.Nai
          concentration of intracellular Na+ [mM]
 Node INaCa.Nao
          concentration of extracellular Na+ [mM]
 Node IRyR.open
          open state probability
 Node ICaL.pAI
          AI state probability for voltage-dependent gate
 Node ICaL.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pC
          C state probability for Ca2+-dependent gate
 Node INaCa.pE1total
          E1 probability
 Node PMCA.permeabilityCa
          factor to define the maximum PMCA current [pA/pF]
 Node CfChannel.permeabilityCa
          channel permeability for Ca2+
 Node CfChannel.permeabilityCl
          channel permeability for Cl- [pA/pF/mM]
 Node CfChannel.permeabilityK
          channel permeability for K+ [pA/pF/mM][pA/pF/mM]
 Node CfChannel.permeabilityNa
          channel permeability for Na+ [pA/pF/mM]
 Node ICaL.pRP
          PR state probability for voltage-dependent gate
 Node ICaL.pU
          U state probability for Ca2+-dependent gate
 Node ICaL.pUCa
          UCa state probability for Ca2+-dependent gate
 Node INaCa.T
          absolute temperature [K]
 Node INaCa.Vm
          membrane potential [mV]
 Node ICaL.Vm
          membrane potential (mV)
 

Uses of Node in org.simBio.bio.takeuchi_et_al_2006.function
 

Classes in org.simBio.bio.takeuchi_et_al_2006.function that implement Node
 class Electroneutrality
          Calculate difference between total amounts of cations and anions.
 class ENaCa
          equilibrium potential for Na+/Ca2+ exchanger.
 class Ouabain
          Calculate ouabain effect on amplitude of INaK.
 

Fields in org.simBio.bio.takeuchi_et_al_2006.function declared as Node
 Node Electroneutrality.aCa
          amount of intracellular Ca2+ [pEq]
 Node Electroneutrality.aCl
          amount of intracellular Cl- [pEq]
 Node Electroneutrality.aK
          amount of intracellular K+ [pEq]
 Node Electroneutrality.aLA
          amount of intracellular LA [pEq]
 Node Electroneutrality.aNa
          amount of intracellular Na+ [pEq]
 Node Electroneutrality.Ca
          concentration of intracellular Ca2+ [mM]
 Node Electroneutrality.Cl
          concentration of intracellular Cl- [mM]
 Node ENaCa.ECa
          equilibrium potential for Ca2+ [mV]
 Node ENaCa.ENa
          equilibrium potential for Na+ [mV]
 Node Electroneutrality.K
          concentration of intracellular K+ [mM]
 Node Electroneutrality.LA
          concentration of intracellular LA [mM]
 Node Ouabain.max
          maximum amplitude [A/F]
 Node Electroneutrality.Na
          concentration of intracellular Na+ [mM]
 Node Ouabain.ouabain
          concentration of extracellular ouabain [mM]
 Node Electroneutrality.totalanion
          amount of intracellular total anions [pEq]
 Node Electroneutrality.totalcation
          amount of intracellular total cations [pEq]
 Node Electroneutrality.volume
          intracellular actuve volume [um^3]
 

Uses of Node in org.simBio.bio.tenTusscher_et_al_2004.complex
 

Fields in org.simBio.bio.tenTusscher_et_al_2004.complex declared as Node
 Node SR.Cai
           
 Node SR.CaTotal
           
 Node SR.Ileak
           
 Node SR.Irel
           
 Node SR.Iup
           
 

Uses of Node in org.simBio.bio.tenTusscher_et_al_2004.current
 

Classes in org.simBio.bio.tenTusscher_et_al_2004.current that implement Node
 class IbCa
          Background Ca2+ current.
 class IbNa
          Background Na+ current.
 class ICa
          L-type Ca2+ current.
 class IpK
          Plateau K current.
 class Ito_endo
          Transient outward current.
 

Fields in org.simBio.bio.tenTusscher_et_al_2004.current declared as Node
 Node IpCa.Cai
           
 Node ICa.Cai
           
 Node ICa.Cao
           
 Node Ito_endo.conductance
           
 Node Ito.conductance
           
 Node INa.conductance
           
 Node IKs.conductance
           
 Node IKr.conductance
           
 Node IK1.conductance
           
 Node ICa.conductance
           
 Node ICa.d
           
 Node ICa.dinfi
           
 Node Ito_endo.dt
           
 Node Ito.dt
           
 Node INa.dt
           
 Node IKs.dt
           
 Node IKr.dt
           
 Node ICa.dt
           
 Node ICa.dtau
           
 Node ICa.eCa
           
 Node IbCa.eCa
           
 Node Ito_endo.eK
           
 Node Ito.eK
           
 Node IpK.eK
           
 Node IKr.eK
           
 Node IK1.eK
           
 Node IKs.eKs
           
 Node INa.eNa
           
 Node IbNa.eNa
           
 Node ICa.f
           
 Node ICa.fCa
           
 Node ICa.fCainfi
           
 Node ICa.finfi
           
 Node ICa.ftau
           
 Node IK1.gate
           
 Node INa.h
           
 Node INa.hinfi
           
 Node INa.htau
           
 Node INa.j
           
 Node INa.jinfi
           
 Node INa.jtau
           
 Node IKr.Ko
           
 Node IK1.Ko
           
 Node INa.m
           
 Node INa.minfi
           
 Node INa.mtau
           
 Node Ito_endo.r
           
 Node Ito.r
           
 Node Ito_endo.rinfi
           
 Node Ito.rinfi
           
 Node Ito_endo.rtau
           
 Node Ito.rtau
           
 Node Ito_endo.s
           
 Node Ito.s
           
 Node Ito_endo.sinfi
           
 Node Ito.sinfi
           
 Node INa.ssActivation
           
 Node INa.ssInactivation
           
 Node Ito_endo.stau
           
 Node Ito.stau
           
 Node Ito_endo.Vm
           
 Node Ito.Vm
           
 Node IpK.Vm
           
 Node INa.Vm
           
 Node IKs.Vm
           
 Node IKr.Vm
           
 Node IK1.Vm
           
 Node ICa.Vm
           
 Node IbNa.Vm
           
 Node IbCa.Vm
           
 Node IKr.xr1
           
 Node IKr.xr1infi
           
 Node IKr.xr1tau
           
 Node IKr.xr2
           
 Node IKr.xr2infi
           
 Node IKr.xr2tau
           
 Node IKs.xs
           
 Node IKs.xsinfi
           
 Node IKs.xstau
           
 

Uses of Node in org.simBio.bio.tenTusscher_et_al_2004.current.carrier
 

Fields in org.simBio.bio.tenTusscher_et_al_2004.current.carrier declared as Node
 Node INaCa.alfa
           
 Node INaK.amplitude
           
 Node INaCa.amplitude
           
 Node INaCa.Cai
           
 Node INaCa.Cao
           
 Node INaK.F
           
 Node INaCa.gamma
           
 Node INaCa.KmCa
           
 Node INaK.KmK
           
 Node INaK.KmNa
           
 Node INaCa.KmNai
           
 Node INaK.Ko
           
 Node INaCa.ksat
           
 Node INaK.Nai
           
 Node INaCa.Nai
           
 Node INaCa.Nao
           
 Node INaK.R
           
 Node INaK.T
           
 Node INaK.Vm
           
 Node INaCa.Vm
           
 

Uses of Node in org.simBio.bio.tenTusscher_et_al_2004.flux
 

Classes in org.simBio.bio.tenTusscher_et_al_2004.flux that implement Node
 class UpTake
          Pump current taking up calcium into SR.
 

Fields in org.simBio.bio.tenTusscher_et_al_2004.flux declared as Node
 Node UpTake.Cai
           
 Node Release.Cai
           
 Node Leak.Cai
           
 Node Release.Casr
           
 Node Leak.Casr
           
 Node Release.d
           
 Node Release.dt
           
 Node Release.g
           
 Node Release.ginfi
           
 Node Release.Vm
           
 

Uses of Node in org.simBio.bio.tenTusscher_et_al_2004.function
 

Classes in org.simBio.bio.tenTusscher_et_al_2004.function that implement Node
 class ReversalPotential2
          calculate reversal potential of the specific Ion.
 

Fields in org.simBio.bio.tenTusscher_et_al_2004.function declared as Node
 Node Current.in
           
 Node ReversalPotential2.Ki
           
 Node ReversalPotential2.Ko
           
 Node ReversalPotential2.Nai
           
 Node ReversalPotential2.Nao
           
 Node Charge.Vm
           
 

Uses of Node in org.simBio.bio.terashima_et_al_2006.complex
 

Classes in org.simBio.bio.terashima_et_al_2006.complex that implement Node
 class WaterFlux
          Water flux across the cell membrane [um3/ms].
 

Fields in org.simBio.bio.terashima_et_al_2006.complex declared as Node
 Node WaterFlux.Caext
          concentration of extracellular Ca2+ [mM]
 Node WaterFlux.Caint
          concentration of intracellular Ca2+ [mM]
 Node WaterFlux.Clext
          concentration of extracellular Cl- [mM]
 Node WaterFlux.Clint
          concentration of intracellular Cl- [mM]
 Node WaterFlux.Kext
          concentration of extracellular K+ [mM]
 Node WaterFlux.Kint
          concentration of intracellular K+ [mM]
 Node WaterFlux.LAext
          concentration of extracellular large anionic compound [mM]
 Node WaterFlux.LAint
          concentration of intracellular large anionic compound [mM]
 Node WaterFlux.Naext
          concentration of extracellular Na+ [mM]
 Node WaterFlux.Naint
          concentration of intracellular Na+ [mM]
 Node WaterFlux.TotalIonext
          sum of extracellular ionic concentration [mM]
 Node WaterFlux.TotalIonint
          sum of intracellular ionic concentration [mM]
 Node WaterFlux.volumeext
          extracellular volume [um3]
 Node WaterFlux.volumeint
          intracellular volume [um3]
 

Uses of Node in org.simBio.bio.terashima_et_al_2006.current
 

Fields in org.simBio.bio.terashima_et_al_2006.current declared as Node
 Node Diffusion.Cai
          concentration of intracellular Ca2+ [mM]
 Node Diffusion.Cao
          concentration of extracellular Ca2+ [mM]
 Node MembraneTransporter.CCl
          to see Cl current component
 Node Diffusion.Cli
          concentration of intracellular Cl- [mM]
 Node Diffusion.Clo
          concentration of extracellular Cl- [mM]
 Node MembraneTransporter.currentCl
          link to the Cl component (pA) of compartment
 Node Diffusion.Ki
          concentration of intracellular K+ [mM]
 Node Diffusion.Ko
          concentration of extracellular K+ [mM]
 Node Diffusion.Nai
          concentration of intracellular Na+ [mM]
 Node Diffusion.Nao
          concentration of extracellular Na+ [mM]
 

Uses of Node in org.simBio.bio.terashima_et_al_2006.current.carrier
 

Classes in org.simBio.bio.terashima_et_al_2006.current.carrier that implement Node
 class NKCC
          Flux via Na+-K+-2Cl- cotransporter [amol/msec].
 

Fields in org.simBio.bio.terashima_et_al_2006.current.carrier declared as Node
 Node NKCC.ClFlux
          Cl- current carried by NKCC1 [pA]
 Node NKCC.Cli
          concentration of intracellular Cl- [mM]
 Node NKCC.Clo
          concentration of extracellular Cl- [mM]
 Node NKCC.Ki
          concentration of intracellular K+ [mM]
 Node NKCC.Ko
          concentration of extracellular K+ [mM]
 Node NKCC.Nai
          concentration of intracellular Na+ [mM]
 Node NKCC.Nao
          concentration of extracellular Na+ [mM]
 Node NKCC.P
          factor to define the maximum flux via NKCC1 [amol]
 Node NKCC.pE1S
          probability of pE1S
 

Uses of Node in org.simBio.bio.terashima_et_al_2006.current.cf
 

Classes in org.simBio.bio.terashima_et_al_2006.current.cf that implement Node
 class CfChannel
          calculate current component of Na, K, Ca, and Cl ion according to the constant field theory.
 class IClb
           
 class IVRCC
          volume-regulated Cl- current.
 

Fields in org.simBio.bio.terashima_et_al_2006.current.cf declared as Node
 Node Ist.activation
           
 Node ICaT.activation
          open probability of activation gate
 Node ICFTR.ATP
          concentration of intracellular ATP [mM]
 Node ICaL.ATP
          intracellular ATP concentration (mM)
 Node Iha.C1
           
 Node Iha.C2
           
 Node ICaL.CaDiadic
          local Ca2+ concentration near the mouth of L-type Ca channel (mM)
 Node Ist.Cai
           
 Node ILCCa.Cai
          intracellular calcium concentration (mM)
 Node ICaL.Cai
          intracellular Ca2+ concentration (mM)
 Node ICFTR.cAMP
          concentration of intracellular cAMP [mM]
 Node CfChannel.constantFieldCa
          Ca2+ flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldCl
          Cl- flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldK
          K+ flux calculated by constant field theory [mM]
 Node CfChannel.constantFieldNa
          Na+ flux calculated by constant field theory [mM]
 Node ICFTR.cPKA
          fraction of cAMP-activated PKA
 Node INa.gate
          ultra-slow gate
 Node ICaL.gate
          ultra-slow gate probability
 Node Ito.gate1
          activation gating variable
 Node Ito.gate2
          inactivation gating variable
 Node IKpl.GK
          channel conductance
 Node Ist.inactivation
           
 Node ICaT.inactivation
          open probability of inactivation gate
 Node ICFTR.Isoprenaline
          concentration of extracellular isoprenaline [uM]
 Node Iha.O1
           
 Node Iha.O2
           
 Node Iha.O3
           
 Node INa.pAI
          AI state probability for voltage-dependent gate
 Node ICaL.pAI
          AI state probability for voltage-dependent gate
 Node INa.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pAP
          AP state probability for voltage-dependent gate
 Node ICaL.pC
          C state probability for calcium-dependent gate
 Node IVRCC.permeabilityCl
          converting factor for IVRCC [pA/pF/mM]
 Node INab.permeabilityK
          converting factor (conductance) for K+ background current [pA/pF/mM]
 Node IClb.permeabilityK
          converting factor (conductance) for K+ background current [pA/pF/mM]
 Node ICFTR.POpen
          open probability
 Node INa.pRP
          RP state probability for voltage-dependent gate
 Node ICaL.pRP
          PR state probability for voltage-dependent gate
 Node ICaL.pU
          U state probability for calcium-dependent gate
 Node ICaL.pUCa
          UCa state probability for calcium-dependent gate
 Node Ist.slowInact
           
 Node IVRCC.Vm
          membrane potential [mV]
 Node Ito.Vm
          membrane potential (mV)
 Node Ist.Vm
           
 Node INa.Vm
          membrane potential (mV)
 Node IKpl.Vm
          membrane potential (mV)
 Node Iha.Vm
           
 Node ICaT.Vm
          membrane potential
 Node ICaL.Vm
          membrane potential (mV)
 Node IVRCC.Vt
          intracellular volume [um^3]
 

Uses of Node in org.simBio.bio.terashima_et_al_2006.current.potassium
 

Classes in org.simBio.bio.terashima_et_al_2006.current.potassium that implement Node
 class PureKchannel
          calculate pure potassium channel current.
 

Fields in org.simBio.bio.terashima_et_al_2006.current.potassium declared as Node
 Node IK1.alfa
          rate constant
 Node IKATP.ATPi
          concentration of intracellular ATP[mM]
 Node IKs.Ca
          intracellular Ca2+ concentration
 Node IK1.gate
          gate, blocked by polyamine (time dependent compornent)
 Node IKs.gate1
          the open probability of voltage-dependent gate
 Node IKr.gate1
          activation gating variable (the rapid component)
 Node IKs.gate2
          the open probability of [Ca2+]i-dependent gate
 Node IKr.gate2
          activation gating variable (the slow component)
 Node IKr.gate3
          inactivation gating variable
 Node PureKchannel.permeabilityK
          channel permeability for potassium
 Node IKr.POpen
           
 Node PureKchannel.reversalPotential
          reversal potential
 Node PureKchannel.Vm
          membrane potential (mV)
 Node IKs.Vm
          Membrane Potential(mV)
 

Uses of Node in org.simBio.bio.terashima_et_al_2006.experiment
 

Classes in org.simBio.bio.terashima_et_al_2006.experiment that implement Node
 class StepChanger2
          step change
 class TonicityChange
          Change extracellular fluid tonicity
 

Fields in org.simBio.bio.terashima_et_al_2006.experiment declared as Node
 Node TonicityChange.Caext
          concentration of extracellular Ca2+ [mM]
 Node TonicityChange.Cainitial
          concentration of initial extracellular Ca2+ [mM]
 Node TonicityChange.Clext
          concentration of extracellular Cl- [mM]
 Node TonicityChange.Clinitial
          concentration of initial extracellular Cl- [mM]
 Node TonicityChange.elapsedTime
           
 Node TonicityChange.Kext
          concentration of extracellular K+ [mM]
 Node TonicityChange.Kinitial
          concentration of initial extracellular K+ [mM]
 Node TonicityChange.LAext
          concentration of extracellular large anionic compound [mM]
 Node TonicityChange.LAinitial
          concentration of initial extracellular large anionic compound [mM]
 Node TonicityChange.Naext
          concentration of extracellular Na+ [mM]
 Node TonicityChange.Nainitial
          concentration of initial extracellular Na+ [mM]
 Node VolumeRatio.Vt
          total cell volume (um^3)
 

Uses of Node in org.simBio.bio.terashima_et_al_2006.function
 

Classes in org.simBio.bio.terashima_et_al_2006.function that implement Node
 class AmplitudeNaK
          Calculate volume-dependency of INaK amplitude.
 class KoDependency2
          Calculate Ko dependency for IKATP.
 class Tonicity
          Tonicity of extracellular fluid .
 class TotalVolume
          Calculate total cell volume from cell volume accessible for ion diffusion.
 

Fields in org.simBio.bio.terashima_et_al_2006.function declared as Node
 Node Tonicity.Caext
          concentration of extracellular Ca2+ [mM]
 Node Tonicity.Clext
          concentration of extracellular Cl- [mM]
 Node Tonicity.Kext
          concentration of extracellular K+ [mM]
 Node KoDependency2.Ko
          out side Potassium concentration
 Node KoDependency.Ko
          concentration of extracellular Potassium (mM)
 Node Tonicity.LAext
          concentration of extracellular large anionic compound [mM]
 Node Tonicity.Naext
          concentration of extracellular Na+ [mM]
 Node Volume.ratio
          ratio
 Node Tonicity.T
          extracellular fluid tonicity
 Node Volume.total
          total value
 Node TotalVolume.Vi
          the osmotically active cell volume (um^3)
 Node AmplitudeNaK.Vt
          total cell volume [um^3]
 

Uses of Node in org.simBio.core
 

Subinterfaces of Node in org.simBio.core
 interface Variable
           
 

Classes in org.simBio.core that implement Node
 class Analyzer
          Please inherit this Class to manipulate every Node.
 class Component
          super class of the core package, similar to public String, Component of the Composite Pattern.
 class Composite
          Composite Pattern.
 class Conductor
          root instance to conduct integration.
 class Link
          making Link
 class Parameter
          labeled public double, Component of the Composite Pattern.
 class Reactor
          set of equations.
 

Fields in org.simBio.core declared as Node
 Node Conductor.duration
          duration of integration
 Node Conductor.elapsedTime
          elapsed time
 Node Conductor.timeStep
          time step of integration
 

Methods in org.simBio.core that return Node
protected  Node Composite.getLink(java.lang.String name)
          引数のnameで指定されたxmlのlinkが指し示す対象への参照を返す。
 Node Composite.getNode(java.lang.String name)
          serch the Node of the same name,
受け取った文字列と同じ名前の最初に見つかったNodeを返す。
 

Uses of Node in org.simBio.core.integrator
 

Classes in org.simBio.core.integrator that implement Node
 class Concentration
          The amount of ion (or molecule) is hold as value.
 class Euler
          the variable calculated by euler method
オイラー法で計算される変数
 class Positive
          keep the value positive.
 class PositiveRK
          Keep the value positive, for Runge-Kutta.
 class Probability
          Keep the value between 0 and 1.
 class RungeKutta
          RungeKutta法で計算される変数
the variable calculated by RungeKutta method
 

Uses of Node in org.simBio.sim.analyzer
 

Classes in org.simBio.sim.analyzer that implement Node
 class StopWatch
           
 class VisualizeAnalyzer
          base class for visualized Node(Viewer, Graph, Axis).
 

Fields in org.simBio.sim.analyzer declared as Node
 Node StopWatch.elapsedTime
           
 Node StopWatch.lapTime
           
 Node StopWatch.totalTime
           
 

Methods in org.simBio.sim.analyzer that return Node
protected  Node VisualizeAnalyzer.getNodeHierarchically(java.lang.String name)
          serch the Node of the same name(or upper level node).
 Node VisualizeAnalyzer.getNodeRecursive(java.lang.String name)
          serch the Node of the same name.
 

Methods in org.simBio.sim.analyzer with parameters of type Node
protected  double VisualizeAnalyzer.getDouble(Node node)
          get value from node.
 

Uses of Node in org.simBio.sim.analyzer.csv
 

Classes in org.simBio.sim.analyzer.csv that implement Node
 class ALaCarte
          Writes a numerical value of selected nodes to csv file.
 class CsvMaker
          Writes values to a file in csv format. If a directory which does not exist is included in the file path, the directory is created.
 class Siblings
          should be placed into the xml file of the parent node from which one wants to get the childrens' parameters
親Reactorの持つ全てのVariableとReactorの値をcsv形式で書き出す
 class Total
          writes values of all parameters, variables and nodes to csv file
親Reactor以下のTreeに存在する全てのReactorとParameterの値をcsv fileに書き出す
 

Fields in org.simBio.sim.analyzer.csv declared as Node
 Node CsvMaker.elapsedTime
           
 

Uses of Node in org.simBio.sim.analyzer.csv.keep
 

Classes in org.simBio.sim.analyzer.csv.keep that implement Node
 class ParamEvalKeeper
          Keep changing parameters and evaluaion values and write to csv.
 class TimeSeriesKeeper
          Keep time series data and write to csv.
 

Fields in org.simBio.sim.analyzer.csv.keep declared as Node
 Node TimeSeriesKeeper.elapsedTime
           
 

Uses of Node in org.simBio.sim.analyzer.csv.result
 

Classes in org.simBio.sim.analyzer.csv.result that implement Node
 class AbstractAppender
          append the parameters to CSV file at the end of calculation.
 

Fields in org.simBio.sim.analyzer.csv.result declared as Node
 Node AbstractAppender.fileName
          file name to write result data.
 

Uses of Node in org.simBio.sim.analyzer.graph
 

Classes in org.simBio.sim.analyzer.graph that implement Node
 class AbstractGraph
          Provides a Graph framework. Constructs a framework in this class so that the Graph class which inherits from it can be implemented simply, without providing redrawing functions etc.
 class Axis
          Coordinate axis base class
 class AxisX
          x axis
 class AxisXFix
          x axis (do not scroll) for RelationGraph.
 class AxisXLog
          x axis by log scale.
 class AxisY
          y axis
 class AxisYLog
          y axis by log scale.
 class BasicGraph
          Graph which displays time series data.
 class Graph
          Graph (optimised) which displays 2D graph data in chronological order.
 class Graph4State
          Draws the target as a surface. Overrides the line/point drawing methods in order to draw the surface.
 class RelationGraph
          2D graph of relation between two parameters.
 class StepChart
          Shifts and displays the target. Overrides the line/point drawing method, and shifts the drawing position.
 class Viewer
          Graph viewer.
 

Fields in org.simBio.sim.analyzer.graph declared as Node
protected  Node[] AbstractGraph.target
          Nodes which become the drawing target (target X)
 

Uses of Node in org.simBio.sim.analyzer.graph.simple
 

Classes in org.simBio.sim.analyzer.graph.simple that implement Node
 class RateGraph
          sample graph for bio.function
 class RateGraph_KA
          sample graph for bio.function
 class RelationGraph_LP
          2D graph of relation between two parameters for org.simBio.sim.analyzer.measure.LeadPotential.
 

Fields in org.simBio.sim.analyzer.graph.simple declared as Node
 Node RateGraph_KA.iv
           
 Node RateGraph_KA.max
           
 Node RateGraph_KA.min
           
 Node RateGraph_KA.step
           
 Node Axis.units
           
 Node RelationGraph_LP.Vm
           
 

Uses of Node in org.simBio.sim.analyzer.measure
 

Classes in org.simBio.sim.analyzer.measure that implement Node
 class AbstractMeasure
          Measuring.
 class Amplitude
          get the difference between the maximum and minimum value of the target.
 class AmplitudeInCycle
          get the difference between the maximum and minimum value of the target in a cycle.
 class APD
          Measuring Action Potential Duration.
 class APDforSA
          ペースメーカモデルの活動電位持続時間を計測する。 閾値はmVで指定する。
 class APDforSA2
          ペースメーカモデルの活動電位持続時間を計測する。 閾値はAPAのパーセントで指定する。
 class HR
          心拍数を計測する。
 class LeadPotential
          Calculate Lead Potential.
 class Limitter
          targetの値が設定値を超えたら計算を終了する。
 class PeakDetect
          
 class Sum
          targetsの和を求める。
 class Vmax
          Measuring dV/dt max.
 class VmaxTime
          measure Vmax and timing of Vmax.
 

Fields in org.simBio.sim.analyzer.measure declared as Node
 Node APDforSA2.APA
          活動電位の大きさ (mV)
 Node APD.APA
           
 Node LeadPotential.CCa
           
 Node LeadPotential.CCl
           
 Node LeadPotential.CK
           
 Node VmaxTime.Cm
          membrane capacitance (pS)
 Node Vmax.Cm
           
 Node LeadPotential.CNa
           
 Node LeadPotential.currentCa
           
 Node LeadPotential.currentCl
           
 Node LeadPotential.currentK
           
 Node LeadPotential.currentNa
           
 Node LeadPotential.ECa
           
 Node LeadPotential.ECl
           
 Node LeadPotential.EK
           
 Node LeadPotential.ENa
           
 Node LeadPotential.INaK
           
 Node LeadPotential.IPMCA_CCa
           
 Node Vmax.It
           
 Node APD.It
           
 Node HR.iTotal
          総電流 (pA)
 Node APDforSA2.iTotal
          総電流 (pA)
 Node VmaxTime.Itotal
          total membrane current (pA)
 Node AmplitudeInCycle.maximum
          maximum value of the target
 Node Amplitude.maximum
          maximum value of the target
 Node APDforSA2.MDP
          最大分極電位 (mV)
 Node AmplitudeInCycle.minimum
          minimum value of the target
 Node Amplitude.minimum
          minimum value of the target
 Node APDforSA2.OverShoot
          活動電位のピーク (mV)
 Node APD.peak
           
 Node APD.percent
           
 Node APD.resting
           
 Node PeakDetect.target
           
 Node Limitter.target
          計測対象
 Node AmplitudeInCycle.target
          to analyze
 Node Amplitude.target
          to analyze
 Node LeadPotential.Vm
           
 Node APDforSA.Vm
          膜電位 (mV)
 Node APD.Vm
           
 Node VmaxTime.Vmax
          Vmax: maximum rate of rise (mV/ms)
 

Uses of Node in org.simBio.util.numerical
 

Classes in org.simBio.util.numerical that implement Node
 class MathFunction
          This abstract class represents a mathematical function on a simBio model tree.
 class MathMultivariableFunction
          This abstract class represents a mathematical function on a simBio model tree (light-weight version).
 class MathUnivariableFunction
          This abstract class represents a mathematical function on a simBio model tree (light-weight version).
 

Uses of Node in org.simBio.util.numerical.methods
 

Methods in org.simBio.util.numerical.methods with parameters of type Node
static double BroydenMethod.solve(MathFunction[] functions, Node[] nodes)
          Solves the specified nonlinear equations for the specified variables.
static double BroydenMethod.solve(MathFunction[] functions, Node[] nodes, double epsilon, int iteration)
          Solves the specified nonlinear equations for the specified variables.
static double SecantMethod.solve(MathFunction function, Node node)
          Solve the specified nonlinear equation.
static double SecantMethod.solve(MathFunction function, Node node, double epsilon)
          Solve the specified nonlinear equation.
static double BroydenMethod.solve(MathMultivariableFunction[] functions, Node[] nodes)
          Solves the specified nonlinear equations for the specified variables.
static double BroydenMethod.solve(MathMultivariableFunction[] functions, Node[] nodes, double epsilon, int iteration)
          Solves the specified nonlinear equations for the specified variables.
static double SecantMethod.solve(MathUnivariableFunction function, Node node)
          Solve the specified nonlinear equation.
static double SecantMethod.solve(MathUnivariableFunction function, Node node, double epsilon)
          Solve the specified nonlinear equation.
 



Copyright © 2002-2008 Cell/Biodinamics simulation project. All Rights Reserved.